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Abstract. A molecular model of freely jointed chains of chiral monomers is developed to describe the
piezoelectric effect in chiral nematic elastomers. The model, an extension of the neo-classical theory of
nematic polymer networks, takes into account a chiral biasing of molecular alignment under shear which
leads to induced polarisation if the monomers contain a transverse dipole moment. The resulting theory
is fully non-linear in elastic deformations, in the spirit of ordinary rubber elasticity. The expansion to the
highest order in small strains gives the three linear piezoelectric coefficients predicted by phenomenological
models.

PACS. 61.30.-v Liquid crystals – 61.41.+e Polymers, elastomers, and plastics – 77.65.-j Piezoelectricity
and electrostriction

1 Introduction

Liquid crystalline elastomers and gels – rubbery polymer
networks with a spontaneously broken orientational sym-
metry – exhibit a number of unique physical effects and
have been a subject of extensive study in recent years.
Many different systems have been synthesised: side-chain
nematic and smectic polysiloxanes and polyacrylates, as
well as several main-chain nematic and smectic polymers,
all crosslinked by a variety of methods. The review [1]
gives a summary of this activity, together with theoret-
ical concepts rationalising the observed physical proper-
ties. Most of the characteristic effects in liquid crystalline
elastomers and gels are based on the coupling between
their high rubber-elasticity and their orientational order,
reflected in the shape anisotropy of polymer strands in the
network. Resulting mechanical and optical properties be-
come rich in non-linear behaviour, instabilities and spec-
tacular anomalies.

A natural extension of this research is into polarisa-
tional properties of liquid crystalline elastomers. By anal-
ogy with their “parent” ordinary liquid crystals, one might
expect interesting and potentially useful effects involving
electric polarisation and external fields. In particular, chi-
ral (non-centrosymmetric) materials have been known to
exhibit important properties, such as a non-linear opti-
cal response and piezoelectricity. Indeed, after the theo-
retical prediction [2], piezoelectricity has been found in
cholesteric side-chain elastomers [3,4] and in polydomain
elastomers combining main-chain and side-chain meso-
genic groups [5]. Curiously, although it has been later
pointed out [6,7] that the original theoretical model [2]
is incorrect, the physical effect of polarisation induced by
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mechanical deformation has been undeniable. Assuming
that the cholesteric order (with its equilibrium helical tex-
ture being further altered by an external strain) is too
complex for a clean separation of this new effect, a con-
tinuum theory [6] has been developed for an untwisted tex-
ture of cholesteric elastomer, a so-called “chiral nematic”
state with a uniform director alignment. The resulting pre-
diction for the linear piezoelectric polarisation takes the
form

P = γ1

[
n̂× (ε · n̂)

]
+ γ2n̂(ω · n̂) + γ3ω , (1)

where γ1,2,3 are the phenomenological piezoelectric coeffi-
cients. Here P is the electric polarisation, n̂ the nematic
director, εij = 1

2 [∂iuj + ∂jui] the symmetric elastic strain

and ω = 1
2curlu the effective rotation vector correspond-

ing to the antisymmetric part of strain. The last two terms
in (1) describe the response to antisymmetric deforma-
tions applied to a uniaxial chiral material (note that the
constant γ3 would not vanish even in the isotropic phase).
However, the non-trivial antisymmetric strain in isotropic
bodies is at least cubic in deformation and these two terms
do not describe the true linear piezoelectricity. This is not
to say that their effect cannot be detected: elastomers and
gels are capable of very large deformations where the me-
chanically non-linear piezoelectricity would generate a po-
larisation response, for instance at multiple frequencies of
an oscillating mechanical input. Another aspect of anti-
symmetric deformations in nematic elastomers is the ef-
fect of relative rotation, the difference between the local
rotation of an elastic matrix ω and that of the director.
In fact, only the difference (ω − [n̂× δn̂]) is a valid inde-
pendent elastic variable and one may expect it to produce
a piezoelectric response due to the γ2, γ3 terms.
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Fig. 1. A schematic representation of vectors and deformations
in the first term of equations (1) and (2): (a) A chiral material
with the uniform director along x̂ or ŷ, symmetrically sheared
in the x̂ŷ plane, generates a piezoelectric polarisation along
the ẑ axis. (b) A corresponding response of helically twisted
cholesterics: when the shear is applied in the plane that in-
cludes the helical axis ĥ, the polarisation is induced in the
perpendicular direction.

Still, the most interesting is the first term (γ1) in
equation (1), which describes a linear piezoelectric polar-
isation induced in the direction perpendicular to a sym-
metric shear deformation in the plane that includes the
(uniform) director n̂, see Figure 1a. Although not new
from the symmetry point of view, such an effect has not
been unambiguously identified in rubbery polymer materi-
als. However, the model [6] has been erroneously extended
into twisted cholesteric textures. The corrected version [7],
which used the adequate coarse-graining of the sufficiently
tight cholesteric helix, resulted in a similar expression for
polarisation (in a slightly altered notation)

P = γ̃1

[
ĥ× (ε · ĥ)

]
+ γ̃2ĥ(ω · ĥ) + γ̃3ω . (2)

Here the unit pseudo-vector ĥ is the helix axis. These three
terms correspond to a combination of entries in the orig-
inal piezoeffect (1): γ̃1 ⇒ γ1, γ̃2 ⇒ −γ2, γ̃3 ⇒ (γ2 + γ3).
However, the authors of [7] only considered an ordinary
(non-chiral, microscopically centrosymmetric) flexoelec-
tric effect as the mechanism for polarisation induced by
deformations of a cholesteric helix. Since the flexoelectric
effect depends on gradients of the director, their coeffi-
cients γ̃1,2,3 were necessarily proportional to qo, the wave
number of cholesteric helix. The first term γ̃1 describes
the response to a symmetric shear deformation, which
has been specifically examined in a subsequent experi-
mental work [8]. However, it can hardly be clear what
sort of complex internal deformation is occuring inside
a helically twisted texture which is being sheared across
the helix axis, Figure 1b. Therefore, even the conclusions
about the magnitude of the observed effect may be un-
reliable. From both theoretical and experimental points
of view it is important to return to the original picture
of a uniform chiral-nematic texture and examine its un-
ambiguous piezoelectric response to an appropriate set of
uniform shear deformations.

All the existing theoretical models have the same de-
ficiency: being essentially phenomenological, they cannot
shed any light on the real microscopic processes that cause
a mechanically induced disbalance of molecular dipoles,
which produces the macroscopic piezoelectric polarisation.
Also, they are confined to linear deformations, whereas the

experience of nematic rubber elasticity [1] has shown that
most interesting and important effects take place in the
regime of high (rubber) elasticity. This paper attempts
to address this question and examine a simplest molecu-
lar model of freely-jointed chiral polymer chains, its con-
formation change under the elastic strain in the network
and the resulting macroscopic piezoelectric effect. We thus
derive a full non-linear expression for such polarisation,
which takes a qualitative form

P ' ns dQ∆
(
n̂ · λ

)
·
[
λT × n̂

]
, (3)

where n̂ is the nematic director and the deformation is
described by the general (non-symmetric) Cauchy strain
tensor λ. The full expression (18) derived below includes
the difference in orientations of director n̂ before and after
the deformation, which may occur at large strains. Impor-
tant factors of crosslinking density ns, the nematic order
parameter Q, the molecular dipole d and ∆, the dimen-
sionless measure of the molecular chirality, determine the
magnitude of this polarisation. On expansion to the linear
order in small deformations (ε = λ−1) we recover all three
terms in equation (1) and determine the phenomenological
piezoelectric coefficients γ1,2,3. In particular, the impor-
tant linear coefficient γ1 is found as γ1 ' nsdQ∆, which
gives a crude estimate γ1 ∼ 10−4 − 10−5 C/m

2
for some

typical values of elastomer parameters. This, combined
with the low value of the elastic modulus (µ ∼ 105J/m

3
),

makes the equilibrium piezoelectricity in rubbers a very
attractive effect for many applications. The main result
of this paper, the fully non-linear piezoelectric polarisa-
tion, is given in Section 4; Section 5 describes the limit
of linear elastic response deriving the equation (1). In the
Conclusions we return to the experiment [8] and analyse
its findings assuming they were due to a real piezoelectric
effect as described in this paper.

2 Coupling of chirality and deformations

Before proceeding with statistical-mechanical calcula-
tions, we shall first discuss qualitative reasons for the
mechanically induced disbalance of dipoles of chiral
molecules. Molecular chirality has been discussed exten-
sively in the past [9] and was the direct cause of several
physical effects, such as the ferroelectricity in smectic C∗

[10]. For a molecule (chain monomer in our case) to be
chiral one should be able to identify a dimensionless pseu-
doscalar parameter such as (d̂ · [û × v̂]) = sinΘ cosΨ in
Figure 2. We shall see below that when such monomers are
connected into a chain and one examines the orientational
biasing induced by stretching such chains, the relevant me-
chanical parameter is ∆ = (b/a)(d̂ · [û × v̂]), i.e. it also
involves the geometric aspect ratio of a monomer.

Now let us consider a simple case when all three vec-
tors are perpendicular, û⊥v̂⊥d̂, so that we consider only
the transverse molecular dipole and the measure of the
molecular chirality is now the length of the perpendicu-
lar spur (essentially, the b sin Θ in Fig. 2), in compari-
son with the main mesogenic monomer length a. Let such
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Fig. 2. A sketch of the chiral mesogenic molecule. The long
molecular axis û is the direction that couples to the nematic
mean field. The steric dipole can be parametrised by another
unit vector, v̂, not parallel to the principal axis. The molecule
possesses an electric dipole in the direction d̂, non-coplanar
with the pair of û-v̂.

monomers be connected into polymer chains, which are
aligned with their main axes û along the nematic direc-
tor, see Figure 3a. Because the nematic order is uniaxial
and quadrupolar, there is no preference in any particu-
lar orientation of v̂ (along the spur) or d̂, represented by
dots and crosses, in or out of the page in Figure 3a. Sup-
pose all such chains are crosslinked into the network so
that a shear deformation, as in Figure 3b, causes a cor-
responding chain stretching at an angle to the nematic
director. Asymmetric monomers are now forced to accom-
modate the deformation and they can do it by aligning
the monomer end-to-end vector aû + bv̂ along the diago-
nal in Figure 3b. If at the same time they are kept aligned
with their long axes û along the nematic director, the
orientation of vectors v̂ becomes biased. This is a purely
geometric argument having nothing to do with chirality.
However, if the monomers are chiral with transverse dipole
moments as in Figure 3, the orientation of these moments
becomes biased as well, i.e. there is a net polarisation in-
duced in the direction perpendicular to the plane of n̂ and
the shear. A counterside of this argument is that if the di-
rector is allowed to rotate freely, according to the imposed
strain, there would be no biasing and no polarisation. A
regime when nematic elastomer is allowed unrestricted
director rotation under strain is called “soft deformation”
(see [1] for detail). We shall indeed find in the explicit cal-
culation below that all soft elastic deformations result in
the zero piezoelectric response.

This picture serves to convince oneself that a chiral
rubbery network stretched in the direction oblique to n̂
can generate a polarisation in the direction perpendicular
to both the extension and the nematic director – as in fact
shown in Figure 1a. We should expect that the degree of
biasing is proportional to the monomer aspect ratio (b/a)
and to the transverse component of molecular dipole, i.e.
to the chiral parameter ∆. In the body of this paper we
shall explicitly calculate the effect expressed pictorially in
Figure 3. We use the freely jointed chain model, ignor-
ing many possibly important effects of monomer interac-
tions and correlations along the chain. However, being the
first molecular-statistical model of chiral elastomers, this
model has a benefit of extreme conceptual simplicity. We
hope its results will help to identify the relevant parame-
ters and properties of true piezoelectric effect in rubbers.

(a) (b)

Fig. 3. When an imposed shear stretches the chains of L-
shaped monomers, preserving the nematic alignment n̂, their
conformation becomes biased [from (a) to (b)]. When the
monomers are chiral, i.e. there is a consistent sign in the pa-
rameter∆, the transverse molecular dipoles align preferentially
(crosses show dipoles into the page). This sketch is analogous
to the famous image of ferroelectric smectic C∗, by Meyer, with
molecules represented as “fish” with dipole moments pointing
out of their eyes [11].

3 Statistics of freely jointed chains

Ignoring the monomer pair interactions and taking into ac-
count the nematic order via the mean-field potential, the
only relevant macroscopic variable for a polymer chain
is its end-to-end distance R. The chain free energy is
purely entropic and is determined by the statistical weight
of N connected monomers under the constraint of fixed
R =

∑N
s=1

(
a ûs + b v̂s

)
. Note the appearance of the per-

pendicular vector v̂ with the small (b � a) length of the
spur for each monomer, as in Figure 3a. Since we are in-
terested in polarisational effects, another constraint has
to be taken into account: the total dipole moment of a

chain is p =
∑N
s=1 ds ≡

∑N
s=1

(
d‖ûs + d⊥v̂s + dt[û× v̂]

)
.

The qualitative discussion above (and, in fact, the explicit
calculation) confirms that the only relevant component of
molecular dipole is the transverse dt, the projection of ds
on the direction perpendicular to both û and v̂.

We now write the statistical weight of a freely jointed
chain with N monomers:

W [R,p] =

∫
DûDv̂ δ

(
R−

N∑
s=1

[
a ûs + b v̂s

])
(4)

·δ

(
p−

N∑
s=1

dt[ûs × v̂s]

) ∏
s

f [ûs],

where the probablity distribution f [û] is determined by
the nematic mean field potential, f ∼ exp

[
J(û · n̂)2

]
. The

integrals over the unit vectors ûs and v̂s are further con-
strained by the condition that ûs⊥v̂s at each monomer.
As usual, we shall not require the explicit form of this
probability, but simply use the uniaxial average results,
such as

〈ûαs û
β
s 〉 =

1

3
(1−Q)δαβ +Qnαnβ ≡

1

3a
`αβ , (5)

where the anisotropic chain step-length tensor is intro-
duced in the last equation. This tensor describes the
equilibrium anisotropic shape of nematic polymers via
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the average end-to-end distance: 〈RαRβ〉 = 1
3aN`αβ;

`αβ = `⊥δαβ + [`‖ − `⊥]nαnβ .
The evaluation of statistical weight W [R,P ] is fairly

straightforward and is usually done by exponentiating the
delta-functional constraints:

W [R,P] =

∫
dψdφ eiψ·R+iφ·p

∫ ∏
s

dûsdv̂s f [ûs]

× e−i
∑
s(aψ·ûs+bψ·v̂s+dtφ·[ûs×v̂s]). (6)

Expanding the exponential in power series, one is looking
for appropriate pairings of variables û and v̂ which pro-
duce the nonzero results after averaging. One such com-
bination comes from the second-order term

−
1

2
a2
∑
s,t

〈ûαs û
β
t 〉ψαψβ , (7)

another from the analogous second-order term

−
1

2
b2
∑
s,t

〈v̂αs v̂
β
t 〉ψαψβ , (8)

the third – from another square, but this time involving
the auxilliary field to the dipole moment

−
1

2
d2
t

∑
s,t

〈[ûs × v̂s]
α[ût × v̂t]

β〉φαφβ (9)

and the most important new contribution arises from the
third-order cross term

i abdt
∑
s,t,w

〈ûαs v̂
β
t [ûw × v̂w]γ〉ψαψβφγ . (10)

One can easily check that higher powers of this series pro-
duce much smaller results, due to the increasing power of
1/N . The first of the four relevant contributions, equation
(7), is the main source of chain configurational entropy
and produces the anisotropic Gaussian distribution W [R].
The second equation (8) generates a small correction to
this Gaussian: on averaging the perpendicular vectors we
obtain 〈v̂αv̂β〉 = 1

2 (δαβ − ûαûβ), the perpendicular pro-
jection operator, which generates another even-order in û
term analogous to (7) but with the small prefactor (b/a)2.
The third equation (9), which also requires a use of the
projection operator, results in the contribution to the en-
tropic free energy proportional to the anisotropic dielectric
susceptibility term ∼ 1

2χP
2. The evaluation of equation

(10) requires a delicate analysis of products of mutually
perpendicular vectors and results in the compact expres-
sion 1

2 iNabdtQ(n̂ ·ψ)(n̂ · [ψ × φ]).
The next step is the evaluation of integrals over auxil-

liary fields by the steepest descent method. Equation (6)
transforms into

W =

∫
dψdφ e{iψ·R−

1
6aNψ

˜̀ψ}e{iφ·p−
1
6Nφκφ} (11)

×

(
1 +

1

6
iNbdt ˜̀

αβ εβγδ ψαψγφδ

)
,

where the parameters of Gaussian exponential terms are
given by the uniaxial matrices

˜̀
αβ = ˜̀

⊥δαβ + [ ˜̀
‖ − ˜̀

⊥]nαnβ (12)

καβ =
1

2
d2
t [(2 +Q)δαβ − 3Q nαbβ] (13)

with

˜̀
⊥ = a

[
1−Q+

1

2
(b/a)

2
[2 +Q]

]
˜̀
‖ = a

[
1 + 2Q+ (b/a)

2
[1−Q]

]
.

We shall often find it appropriate to neglect the small

and qualitatively irrelevant
(
b
a

)2
corrections to ˜̀ and use

the “old” step lengths `‖ and `⊥ instead, with their ra-
tio r = `‖/`⊥ being the only essential parameter defin-
ing the nematic rubber elasticity. By analogy, one can
examine the ratio of parameters κ‖/κ⊥ and find that
κ‖/κ⊥ = 2/(1 + r), perhaps not surprisingly decreasing
with increasing prolate anisotropy r.

The integrals in equation (11) are evaluated at the
saddle points

ψ∗ = i
3

aN
`−1 ·R + ... ; φ∗ ≈ i

3

N
κ−1 · p + ... (14)

There are small corrections to these saddle points which,
however, can be shown [12] not to contribute to the final
free energy at leading order. Equally, the normalisation of
the statistical weight W only contributes to an irrelevant
renormalisation of dielectric susceptibility.

The resulting optimal statistical weight is Gaussian in
both end-to-end distance and dipole moment, with a small
chiral correction ∼ R R p. At this stage it is convenient to
transform from the dipole moment to the polarisation P,
an intensive variable. Assuming we have a polymer melt,
not a solution, the polarisation P is given by the total
dipole moment per unit volume, P = p/(Nvo), with vo
the monomer volume. The resulting (entropic) free energy
of a chosen chain, Fc[R,P ] = −kBT ln W , takes the form

Fc

kBT
≈

3

2aN

(
R · `−1 ·R

)
+

3Nv2
o

2

(
P · κ−1 ·P

)
(15)

−
9vo
2N

b

a2
dt

(
κ−1.ε.`−1

)
R R P,

where we have ignored the normalisation terms, which do
not depend on either R or P, and higher order terms such
as R4 or R2P 2.

The entropic free energy of a freely jointed chain of
chiral mesogenic monomers with transverse dipole mo-
ments, equation (15), has all the features one might ex-
pect. In the lowest, Gaussian approximation it behaves
as a Hookean spring in response to stretching its ends
(F ∼ R2) and it has a dielectric susceptibility part F ∼
1

2χP
2, both effects appropriately uniaxial in the nematic

phase. The chiral coupling between the chain stretching
and its net dipole moment, which has a qualitative form
F ∼ (n̂R)(n̂[R × P ]), is a novelty: it expresses the effect
depicted in Figure 3b and is the basic source of piezoelec-
tricity in chiral anisotropic rubbers.
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4 Quenched average for a deformed network

Classical rubber elasticity theory finds the free energy of
a network strand connecting two crosslinks, a distance R
apart. In our case this is given by equation (15). The initial
distribution of strands by lengths and orientations of their
end-to-end vectors established at the network formation is
topologically frozen for the rest of the network life. Such a
rubbery network resists deformations because connected
crosslinking points, that we consider to move affinely with
(in geometrical proportion to) the body, change their sepa-
ration to R′ = λ ·R and thereby lower the configurational
freedom of the connecting chain. The entropy then falls
and the free energy rises. Finding the total free energy
increase means the quenched averaging of the deformed-
chain free energy with the statistical weight W [R0] at net-
work formation.

Performing the quenched average with the Gaussian
distribution W [R0] is straightforward, even in the uni-
axial nematic case and with the addition of new terms
with polarisation. The average rubber-elastic free energy,
per network strand of N monomers is, therefore, Fs =
〈Fc

[
λR0,P

]
〉W [R0]. Multiplying Fs by the number of net-

work strands per unit volume, ns which is proportional to
the crosslinking density of the elastomer [ns ' (Nvo)

−1],
we obtain the free energy density of a piezoelectric rubber:

f =
1

2
nskBTTr

(
`−1λ `

0
λT
)

+
1

2
Pχ−1P (16)

+
3

2
nskBT vo

bdt

a

(
`−1λ `

0
λT
)
ij
εijk κ

−1
kl Pl

where we used the average 〈Rα0R
β
0 〉 = 1

3aN`
αβ
0 , which

depends on the nematic director orientation n̂0 at net-
work formation. The first term is the neo-classical nematic
rubber-elastic energy [1]. The second, dielectric term de-
fines the entropic part of relevant (transverse) susceptibil-
ity χ = 1

3kBT vo
κ,

χαβ =
d2
t

6kBT vo
[(2 +Q)δαβ − 3Q nαbβ] . (17)

Interestingly, the new chiral coupling between the elastic
strains and the induced polarisation (the full non-linear
piezoelectricity) in equation (16) is reduced to a compact
form, which shows that the polarisation is determined by
the antisymmetric part of exactly the same combination
of strains and orientations that enters into the nematic
rubber elasticity. The equilibrium value of this induced
polarisation is, after minimisation of the free energy den-
sity,

Pk = −
1

2
ns

(
bdt

a

)
εkij

(
`−1λ `

0
λT
)
ij
. (18)

This represents the full non-linear piezoelectric polarisa-
tion induced by elastic strains in a chiral nematic elas-
tomer or gel network. It is a local expression, in which the
initial uniform orientation of the nematic director n̂0 (a
principal axis of `

0
) can be rotated by the strains to the

new orientation n̂ (represented by `). It is quite obvious
that in the isotropic phase this expression gives zero, be-
cause when both ` and `

0
are unit matrices one obtains

Pk ∼ εkij(λ λ
T )ij , a vanishing product of symmetric and

antisymmetric matrices.
The main strength of neo-classical theory of rubber

elasticity [1] is that it does not depend on any specific
model of polymer chain forming the network. Apart from
the standard rubber energy scale, given by the shear mod-
ulus µ = nskBT , everything else depends only on the
dimensionless ratio r = `‖/`⊥ of backbone chain step
lengths – a quantity that can be independently measured.
The richness of nematic rubber elasticity stems from the
uniaxial symmetry and the mobility of director n̂, the
principal axis of matrices `, i.e. in the fact that ` after
deformation can be different from `

0
before (n̂ 6= n̂0).

The piezoelectric polarisation (18) exhibits a similar
universality. The only additional parameter it depends
on is (bdt/a). If we recall that dt is the projection of
molecular dipole moment d on the direction [û × v̂],
this parameter can be re-written as |d|∆, where the
dimensionless quantity ∆ is the relevant measure of
molecular chirality and mechanical bias of each monomer.
It can be determined independently, theoretically or
experimentally (see [9], for instance). We then conclude
that the piezoelectric polarisation of chiral nematic
elastomers depends linearly on the crosslinking density
ns, molecular dipole d and the pseudo-scalar measure of
chirality ∆. The dependence on nematic order parameter
Q is different for different strain geometries.

5 Linear piezoelectricity at small deformations

Equation (18) for the piezoelectric effect in a chiral ne-
matic elastomer contains all the relevant features of this
phenomenon. One should expect a great variety of new
physical effects at large deformations. However, one of our
purposes here was to derive the first consistent microscopic
model for the linear piezoelectricity, equation (1), and in
particular the coefficient γ1.

The limit of small (linear) deformations is determined
by two conditions. First, one writes the Cauchy strain ten-
sor as λij = δij + εij , where the (non-symmetric) defor-
mation tensor ε is assumed small. Secondly, we need to
disallow independent director rotation during this defor-
mation (because the difference between n̂ and n̂0 is itself
proportional to at least the first power of ε), so that the
step length tensors ` and `

0
are identical. We then obtain,

after expansion to linear order,

εkij

(
`−1λ ` λT

)
ij

= −
r − 1

r
εkij

(
ninlεlj + r ninlε

T
lj

)
.

After replacing the deformation tensor by the sum of its
symmetric and antisymmetric parts, εkl = εSkl + εiklωi,
and some straightforward algebra one obtains the linear
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piezoelectric polarisation

P ≈ −
1

2
ns

(
bdt

a

)
r − 1

r
(19)

·
[
(r + 1)

[
n̂× εS · n̂

]
− (r − 1)

[
n̂× [ω × n̂]

]]
.

The anisotropy of polymer chains can also be expressed
by the backbone order parameter Q (proportional to the
main nematic order, but often much smaller as in side-
chain mesogenic polymers), see equation (12). At small Q
we have (r − 1) ≈ 3Q and the three linear piezoelectric
coefficients of equation (1) take the form

γ1 = −
1

2
ns

(
bdt

a

)
r2 − 1

r
' −3ns

(
bdt

a

)
Q ; (20)

γ2 = −γ3 = −
1

2
ns

(
bdt

a

)
(r − 1)2

r
' −

9

2
ns

(
bdt

a

)
Q2.

Let us remember that in deriving the linear piezoelectric
polarisation (19) we assumed that the nematic director is
immobile in the first approximation. This is the reason the
linear antisymmetric strains εA = ε ·ω find their way into

the effect: the normally physically relevant relative rota-
tion between the elastic network and the nematic director
reduces to ω at constant n̂. A notable fact is that none
of the three coefficients survives in the isotropic phase, at
Q = 0. This should not be surprising because the physical
meaning and the relevance of ω in the absence of nematic
order changes. An adequate molecular theory of piezoelec-
tric response of an isotropic chiral rubber requires a much
more detailed model and will be the subject of a separate
work.

6 Conclusion

This paper describes an ultimately simple molecular
model that combines the chirality of monomers with their
uniaxial alignment in the nematic phase and their connec-
tivity into polymer strands of a rubbery network. The ge-
ometric concept of shear-induced disbalance of transverse
molecular dipoles is summarised in Figure 3. The calcula-
tions that follow produce the fully non-linear piezoelectric
polarisation in response to (possibly large) deformations
of nematic rubber. In analysing Figure 3 one should not
put any specific relevance into the main-chain arrange-
ment of mesogenic units. The picture serves to make clear
the symmetries and geometric preconditions involved in
the effect. A majority of liquid crystalline elastomers and
gels produced so far are, in fact, of side chain mesogenic
polymers which are also well-described by the neo-classical
theory of nematic rubber elasticity. Without any loss of
generality one can devise a sketch for a chiral side-chain
mesogenic monomer, with mechanical asymmetry and per-
pendicular dipole dt, see for instance Figure 4. Chaining
such monomers together and applying a shear strain as in
Figure 3b would result in the coherent biasing of trans-
verse dipoles. On the level of present model the only dif-

Fig. 4. An example of chiral mesogenic side-group monomer
with transverse dipole moment into the page. The parameter
∆ is the same as in the main text but, possibly, of a different
magnitude due to a different meaning of b/a. Note that oblate
and prolate polymer backbone is achieved in this model by
having b/a greater or less than one.

ference between main and side-chain polymers is in the
magnitude of the chain anisotropy r = `‖/`⊥: it has been
reported r ≥ 1.5 in different side-chain polymers (which
means that the induced backbone anisotropy is not very
large, Q ∼ 0.2, say), but neutron scattering shows it may
be a very large quantity in a main-chain nematic polymer,
r ' 10−70 [13].

Another common practice is to induce chirality by di-
luting the polymer (or swelling the gel network) in a chiral
solvent. Our simple model applies to this case equally well,
with a slightly altered meaning of parameter ∆. Naturally
non-chiral monomers do not possess a dipole dt = d[û× v̂]
and, therefore, the mechanical deformation cannot pro-
duce a polarisation. However, in a local field created by
chiral solvent the monomers would acquire an induced chi-
rality, due to the molecular polarisability (see [14], for in-
stance). This solvent-induced chirality can be viewed as
an induced dt. Its value has to be determined by the anal-
ysis of polymer and solvent polarisabilities, but the theory
of piezoelectric effect presented here remains fully appli-
cable.

The main piezoelectric coefficient in equation (18) can
be expressed as γ ' nsd∆, times an appropriate power
of the backbone order parameter Q, see (20). In mak-
ing quantitative predictions we should recall that the
crosslinking density ns is also a factor in the rubber mod-
ulus, so the one can estimate it as ns ∼ 1025 m−3 (at room

temperature and for the typical modulus µ ∼ 105 J/m
3
).

Let us take the molecular dipole d ∼ 1e·1 Å ∼ 10−29 C m,
which may turn out to be a significant underestimate. Let
us also take Q ∼ 0.5 because clearly this does not affect
the overall estimate significantly (unless Q = 0 or a very
strongly anisotropic main-chain polymer is considered).
The rest depends on the scalar dimensionless parameter of
molecular chirality ∆ ∼ (b/a) sinΘ cosΨ in Figure 2. Let
us, for the sake of argument, take Q∆ ∼ 0.1 although in a
real system this may turn out to be either much smaller,
or vice versa – closer to or even greater than unity. We
then arrive at a very crude estimate γ ∼ 10−5 C/m

2
.

In the experimental study [8] the setup was exactly
that of Figure 1b with a simple shear applied across
the cell of thickness Ly = 20 µm (along ŷ direction,
ε = uy/Ly) and the voltage was measured between
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the plates of a large parallel capacitor with C = 20 nF.
The charge was created between the z-faces of the cell
of dimensions Lx = Lz ≈ 10 mm. We have explained
in the Introduction that the physical mechanisms behind
the polarisation induced by highly nonuniform deforma-
tions of cholesteric helix [8] are ambiguous (in particular,
there should be a large contribution from ordinary flexo-
electric effect). However, let us estimate the slope of the
experimentally measured voltage vs. displacement, assum-
ing the polarisation was induced by the real piezoelectric
effect described here. The total charge induced on the cho-
sen faces of the sample is q = Pz(LxLy) = γεLxLy. The
voltage is then V = q/C = (γLx/C)uy. Taking the above
estimate of piezocoefficient γ, the slope of the V (u) plot
should be ∼ 5 V/m. This is remarkably close to the exper-
imental value one extracts from Figure 3 of [8]. Before re-
joicing, however, let us remember that many factors could
influence both theoretical and experimental result (not the
least, the response at a high frequency may be very dif-
ferent from the equilibrium results of this paper).

Notwithstanding these uncertainties, we have raised
the unusual possibility of a polarisation response in rub-
ber, an amorphous material with high internal mobility
and low modulus, capable of very large deformations.

We appreciate valuable discussions with S.M. Clarke, P.D.
Olmsted and E.T. Samulski. Financial support from the Royal
Society and the EPSRC is acknowledged.
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